magnets/main.go
2025-08-23 20:00:40 -03:00

249 lines
6.8 KiB
Go

package main
// veja:
// The relationship between chaos, fractal and physics
// https://www.youtube.com/watch?v=C5Jkgvw-Z6E
import (
// "fmt"
"fmt"
"math"
// "math/rand"
rl "github.com/gen2brain/raylib-go/raylib"
)
type magnet struct {
pos rl.Vector2
color rl.Color
force float32
radius float32
}
type ball struct {
pos rl.Vector2
originGrid rl.Vector2
radius float32
speed rl.Vector2
steps int
}
// parâmetros
const windowWidth = 700
const windowHeight = 700
const gridDivision = 4
const verticalGrids = windowHeight/gridDivision
const horizontalGrids = windowWidth/gridDivision
const magnetsDistance float32 = 80
const magnetRadius = 10
const gravConst float32 = 50
const magnetsAngle = 30
const luminance = false
const hideBalls = true
const hideMagnets = false
var startingBallSpeed = rl.Vector2{X: 0, Y: 0} // joga a bola em alguma diração
// antes que ela comece a ser atraida pelos ímãs
var cameraOffset = rl.Vector2{X: 0, Y: 0}
func (ball *ball) update(magnets []magnet) (bool, rl.Color) {
magnetsPull := rl.Vector2{}
for _, magnet := range magnets {
direction := rl.Vector2Normalize(
rl.Vector2Subtract(ball.pos, magnet.pos),
)
distance := rl.Vector2Distance(magnet.pos, ball.pos)
distanceSquared := math.Pow(float64(distance), 2)
force := gravConst / float32(distanceSquared)
acceleration := rl.Vector2Scale(direction, -force)
magnetsPull = rl.Vector2Add(magnetsPull, acceleration)
}
ball.speed = rl.Vector2Add(ball.speed, magnetsPull)
ball.pos = rl.Vector2Add(ball.speed, ball.pos)
// verificar se bola parou em cima de um ímã
for _, magnet := range magnets {
distance := rl.Vector2Distance(ball.pos, magnet.pos)
insideMagnet := distance < magnet.radius /* + ball.radius */
// atRest := math.Abs(float64(rl.Vector2Length(ball.speed))) < 0.01
if insideMagnet /* && atRest */ {
if luminance { magnet.color.A = uint8(ball.steps) }
return true, magnet.color
}
}
return false, rl.NewColor(0, 0, 0, 0)
}
// var colors = []rl.Color{
// rl.Red, rl.Green, rl.Blue, rl.Yellow, rl.NewColor(0, 255, 255, 255),
// rl.Magenta, rl.White,
// }
func main() {
rl.InitWindow(
windowWidth, windowHeight,
"magnets",
)
defer rl.CloseWindow()
// rl.SetTargetFPS(60)
magnets := []magnet{
{
color: rl.Red,
radius: magnetRadius,
// force: magnetForce,
},
{
color: rl.Gray,
radius: magnetRadius,
// force: magnetForce,
},
{
color: rl.White,
radius: magnetRadius,
// force: magnetForce,
},
{
color: rl.Yellow,
radius: magnetRadius,
// force: magnetForce,
},
{
color: rl.Magenta,
radius: magnetRadius,
// force: magnetForce,
},
}
// posiciona imas em volta de um circulo
xCenter := float32(windowWidth / 2) + cameraOffset.X
yCenter := float32(windowHeight / 2) + cameraOffset.Y
for i := range magnets {
angle := 2.0 * math.Pi * float64(i) / float64(len(magnets)) + magnetsAngle
magnets[i].pos = rl.Vector2{
X: float32(math.Cos(angle)) * magnetsDistance + xCenter,
Y: float32(math.Sin(angle)) * magnetsDistance + yCenter,
}
}
grid := make([][]rl.Color, verticalGrids)
for i := range grid {
grid[i] = make([]rl.Color, horizontalGrids)
for j := range grid[i] {
grid[i][j] = rl.Black
}
}
// ball := ball{
// pos: rl.Vector2{0, 0},
// originGrid: rl.Vector2{X: 0, Y: 0},
// }
//
gridSize := rl.Vector2{
X: float32(windowWidth / int32(verticalGrids)),
Y: float32(windowHeight / int32(horizontalGrids)),
}
var fallingBall []*ball
var fallingBallOrder []rl.Vector2
for y := range grid {
for x := range grid[y] {
fallingBallOrder = append(fallingBallOrder, rl.Vector2{
X: float32(x),
Y: float32(y),
})
}
}
// rand.Shuffle(len(fallingBallOrder), func(i, j int) {
// fallingBallOrder[i], fallingBallOrder[j] =
// fallingBallOrder[j], fallingBallOrder[i]
// })
for _, randomGrid := range fallingBallOrder {
x := randomGrid.X * gridSize.X + gridSize.X/2
y := randomGrid.Y * gridSize.Y + gridSize.Y/2
fallingBall = append(fallingBall, &ball{
pos: rl.Vector2{X: x, Y: y},
speed: startingBallSpeed,
radius: magnetRadius/2,
originGrid: randomGrid,
})
}
for !rl.WindowShouldClose() {
rl.BeginDrawing()
rl.ClearBackground(rl.Black)
for y := range grid {
for x := range grid[y] {
pos := rl.Vector2{
X: gridSize.X * float32(x),
Y: gridSize.Y * float32(y),
}
rl.DrawRectangleV(pos, gridSize, grid[y][x])
}
}
if !hideMagnets {
for i := range magnets {
rl.DrawCircleV(magnets[i].pos, magnetRadius+2, rl.Black)
rl.DrawCircleV(magnets[i].pos, magnetRadius, magnets[i].color)
}
}
if len(fallingBall) == 0 {
rl.EndDrawing()
continue
}
for i := 0; i < len(fallingBall); i++ {
ball := fallingBall[i]
if !hideBalls {
// rl.DrawCircleV(
// ball.pos, ball.radius/2+1, rl.Black,
// )
// rl.DrawCircleV(
// ball.pos, ball.radius/2,
// rl.NewColor(100, 100, 100, 255),
// )
// bolas são difíceis de se calcular =/
rl.DrawRectangleV(
rl.Vector2{X: ball.pos.X-1, Y: ball.pos.Y-1 },
rl.Vector2{X: ball.radius+1, Y: ball.radius+1},
rl.Black,
)
rl.DrawRectangleV(
ball.pos, rl.Vector2{X: ball.radius, Y: ball.radius},
rl.NewColor(100, 100, 100, 255),
)
}
if hit, color := ball.update(magnets); hit {
x := ball.originGrid.X
y := ball.originGrid.Y
grid[int(y)][int(x)] = color
// remover bola
fallingBall[i] = fallingBall[len(fallingBall)-1]
fallingBall = fallingBall[:len(fallingBall)-1]
}
ball.steps += 1
}
// fmt.Println("foo")
rl.EndDrawing()
}
fmt.Println("hello world")
}